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Goals
•Derive polynomial characterizations for the covariance matrices of

identifiable Gaussian latent tree models
• Leverage these characterizations to hypothesis-test the validity of a

possibly large Gaussian latent tree model.

1 Gaussian latent-tree models
•Given an undirected tree T = (V,E) with a node set V and an edge

set E, a subset of nodes X = {X1, . . . , Xm} ⊂ V corresponds to m
observed variables and its complement V \X corresponds to latent
(unobserved) variables.
•MX(T ) (T -Gaussian latent tree model on X): All marginal dis-

tributions for X induced by all |V |-variate Gaussian distributions
respecting the pairwise Markov property of T .
• Each latent node in V \X must have a minimal degree of 3 for model

identifiability (Choi et al., 2011):
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Figure 1: (Choi et al., 2011) Shaded nodes are observed and unshaded nodes are
hidden. (a) An identifiable tree. (b) A non-identifiable tree because h4 and h5 have
degrees less than 3.

2 T -induced pseudo-metric on X

Suppose w : E −→ R≥0 is any function that assigns non-negative
weights to the edges in E, and let phT (p, q) be the set of edges on the
unique path that connects Xp and Xq in T . One can define a pseudo-
metric δw : X×X −→ R≥0 by

δw(Xp, Xq) =

{∑
e∈phT (p,q)w(e) : p 6= q,

0 : p = q.

This is known as a T -induced pseudo-metric on X. We have the fol-
lowing main result:

Theorem 1 (Extension of Corollary 1 in Shiers et al. (2016)). Sup-
pose δ : X × X −→ R≥0 is a pseudo-metric defined on X. Let
δpq = δ(Xp, Xq) for any p, q ∈ {1, . . . ,m} for simplicity. Then
δ is a T -induced pseudo-metric if and only if for any four distinct
1 ≤ p, q, r, s ≤ m such that phT (p, q) ∩ phT (r, s) = ∅,

δpq + δrs ≤ δpr + δqs = δps + δqr, (1)

and for any three distinct 1 ≤ p, q, r ≤ m,

δpq + δqr = δpr (2)

if phT (p, r) = phT (p, q) ∪ phT (q, r).

Figure 2: (Leung and Drton, 2018) The solid circles are the observed nodes and grey
open circles are the latent nodes.

To illustrate the idea of the theorem, Figure 2 lists out all possible
configurations for the minimal subtree induced by any given set of
four observed nodes on a tree T (where any node of degree ≤ 2 and
not among the considered observed nodes is suppressed). For exam-
ple, if the four observed nodes have the leftmost two configurations in
Figure 2 and are distributed as in
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then condition (1) is apparent. Condition (2) can be understood in a
similar manner by considering all possible configurations for a mini-
mal subtree induced by any given set of three observed nodes on the
tree T .

3 Polynomial characterization
Let ρpq be the Pearson correlation of the pair (Xp, Xq) for any 1 ≤ p 6=
q ≤ m. The pairwise Markov property implies that

ρpq =
∏

(u,v)∈phT (Xp,Xq)

ρ′uv,

where ρ′uv is the Pearson correlation between a pair of nodes u and v
in V . Theorem 1 implies a characterization for the covariance matrix
of a random vector X in the modelMX(T ); refer to Leung and Drton
(2018, Corollary 2.2). To illustrate, let Q be the set of all unordered
quadruples of points {p, q, r, s} from {1, . . . ,m} such that exactly one
of the three path pairs in

(phT (p, q), phT (r, s)),

(phT (p, r), phT (q, s))

(phT (p, s), phT (q, r))

gives an empty set when the union of its two components is taken. In
other words,Q contains all quadruples of points whose induced subtree
has the leftmost three configurations in Figure 2. Given {p, q, r, s} ∈
Q, we write {p, q}|{r, s} ∈ Q to indicate that {p, q, r, s} belongs to
Q in such a way that the two paths of edges phT (p, q) and phT (r, s)
have an empty intersection. In particular, condition (1) in Theorem 1
implies the following (necessary) conditions for the covariance matrix
of X, Σ = (σpq)1≤p,q≤m, to belong to the modelMX(T ):

1. For any {p, q}|{r, s} ∈ Q, σ2
prσ

2
qs − σ2

pqσ
2
rs ≤ 0 and σprσqs −

σpsσqr = 0.
2. For any {p, q, r, s} 6∈ Q, σpsσqr − σprσqs = σpqσrs − σprσqs = 0.

4 Testing a star tree model

4.1 The star tree model
A star tree model, i.e. a Gaussian latent tree model of the tree
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(eight observed nodes and one latent node in this picture), is equivalent
to a single factor model with m observed variables X = {X1 . . . , Xm}
described by the linear system of equations

Xp = µp + βpH + εp, 1 ≤ p ≤ m, (3)

where µp is the mean of Xp, H ∼ N(0, 1) is a latent variable, βp is the
loading coefficient for variable Xp, and εp ∼ N(0, σ2

p,ε) is the idiosyn-
cratic error for variableXp. In terms of the tree structure no quadruples
belong toQ. Hence to test if a dataset comes from a Gaussian star tree
model one can test whether for any four points {p, q, r, s} ∈ {1, . . .m},

σpsσqr − σprσqs = σpqσrs − σprσqs = 0.

Note that the two polynomials are respectively det(Σpq,sr) and
det(Σps,qr).

4.2 New testing methodology
Assume X has mean 0 and let X1, . . . ,Xn be i.i.d. draws from the dis-
tribution of X. Due to the independence of samples, the polynomial
det(Σpq,sr) can be estimated unbiasedly with the differences

Yi,(pq)(sr) := Xp,iXs,iXq,i+1Xr,i+1 −Xp,iXr,iXq,i+1Xs,i+1,

i = 1, . . . , n− 1,

where the subscripts in Yi,(pq)(sr) is indicative of the row and
column indices for the submatrix Σpq,sr. If we arrange all
the polynomials in {det(Σpq,sr), det(Σps,qr)}{p,q,r,s}∈{1,...,m} into
a 2

(m
4

)
-vector Θ, and correspondingly arrange the estimates

{Yi,(pq)(sr), Yi,(ps)(qr)}{p,q,r,s}∈{1,...,m} into a 2
(m

4

)
-vector Yi for each

i, then the central limit theorem for 1-dependent sums ensures that for
a sufficiently large sample size n we have the distributional approxi-
mation √

n− 1(Ȳ − Θ) ≈d N(0,Υ),

where Ȳ = (n−1)−1∑n−1
i=1 Yi and Υ = Cov[Y1,Y1]+2Cov[Y1,Y2].

The latter limiting covariance matrix will not degenerate to a singular
matrix even if the underlying covariance matrix for X has a lot of ze-
ros, unlike a previous testing approach taken by Shiers et al. (2016)
which is susceptible to such singularity issues.

Since Θ = 0 when the star tree model is the true generating mecha-
nism, we propose to use a scaled version of the computable sup-norm
quantity √

n− 1‖Ȳ‖∞
as a test statistic for the model validity. A recent advance in high-
dimensional Gaussian approximation theory (Chernozhukov et al.,
2013) suggests that the asymptotic distribution of this test statistic can
be well-approximated with a multiplier bootstrapping technique even
when the dimension m is large compared to the sample size n; refer to
(Leung and Drton, 2018) for the discussion therein.

4.3 Simulation Results
We experimented with our new testing methodology via simulations,
with data generated from the one-factor model in (3) for both (m,n) =

(20, 250) and (m,n) = (20, 500). The parameter values are as follows:
Both loadings β1 and β2 are taken to be 10, while the other loadings
are independently generated based on a normal distribution with mean
0 and variance 0.2. The error variances σ2

p,ε all equal 1/3. Our testing
methodology is compared with the classical likelihood ratio (LR) test.
This is a “near-singular” model since many entries in the covariance
matrix are close to zero. Figure 3 shows the empirical test sizes.

The resulting plots highlight the advantages of our proposed testing
method based on the sup-norm test statistic. As n increases, the empir-
ical test size of our test leans closer to the 45◦ line. This is in contrast to
the performance of the LR test which rejects the true model (3) all too
often, even as n increases. Our approach based on the unbiased poly-
nomial estimates is not subject to non-standard limiting behaviors that
plague the LR test when the parameter values lean close to singularities
of the parameter space (Drton, 2009).
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Figure 3: Empirical test sizes vs nominal test levels based on 500 experiments. Up-
per panels: (m,n) = (20, 250). Lower panels: (m,n) = (20, 500). Open circles: Test
based on our sup-norm test statistic. Crosses: Likelihood ratio test.
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