Goals

- Derive polynomial characterizations for the covariance matrices of identifiable Gaussian latent tree models
- Leverage these characterizations to hypothesis-test the validity of a possibly large Gaussian latent tree model.

Gaussian latent-tree models

- Given an undirected tree T = (V, E) with a node set V and an edge set E, a subset of nodes $\mathbf{X} = \{X_1, \ldots, X_m\} \subset V$ corresponds to m observed variables and its complement $V \setminus \mathbf{X}$ corresponds to latent (unobserved) variables.
- $\mathcal{M}_{\mathbf{X}}(T)$ (*T*-Gaussian latent tree model on **X**): All marginal distributions for X induced by all |V|-variate Gaussian distributions respecting the pairwise Markov property of T.
- Each latent node in $V \setminus \mathbf{X}$ must have a minimal degree of 3 for model identifiability (Choi et al., 2011):

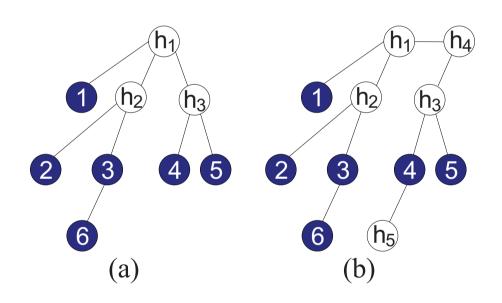


Figure 1: (Choi et al., 2011) Shaded nodes are observed and unshaded nodes are hidden. (a) An identifiable tree. (b) A non-identifiable tree because h_4 and h_5 have degrees less than 3.

T-induced pseudo-metric on X

Suppose $w : E \longrightarrow \mathbb{R}_{>0}$ is any function that assigns non-negative weights to the edges in E, and let $ph_T(p,q)$ be the set of edges on the unique path that connects X_p and X_q in T. One can define a pseudometric $\delta_w : \mathbf{X} \times \mathbf{X} \longrightarrow \mathbb{R}_{>0}$ by

$$\delta_w(X_p, X_q) = \begin{cases} \sum_{e \in ph_T(p,q)} w(e) : p \neq q, \\ 0 & : p = q. \end{cases}$$

This is known as a T-induced pseudo-metric on X. We have the following main result:

Theorem 1 (Extension of Corollary 1 in Shiers et al. (2016)). Suppose $\delta : \mathbf{X} \times \mathbf{X} \longrightarrow \mathbb{R}_{>0}$ is a pseudo-metric defined on \mathbf{X} . Let $\delta_{pq} = \delta(X_p, X_q)$ for any $p, q \in \{1, \ldots, m\}$ for simplicity. Then δ is a T-induced pseudo-metric if and only if for any four distinct $1 \leq p, q, r, s \leq m$ such that $ph_T(p,q) \cap ph_T(r,s) = \emptyset$,

$$\delta_{pq} + \delta_{rs} \le \delta_{pr} + \delta_{qs} = \delta_{ps} + \delta_{qr},\tag{1}$$

and for any three distinct $1 \le p, q, r \le m$,

$$\delta_{pq} + \delta_{qr} = \delta_{pr} \tag{2}$$

if $ph_T(p,r) = ph_T(p,q) \cup ph_T(q,r)$.

Algebraic tests of general Gaussian latent tree models Dennis Leung & Mathias Drton University of Southern California and University of Washington

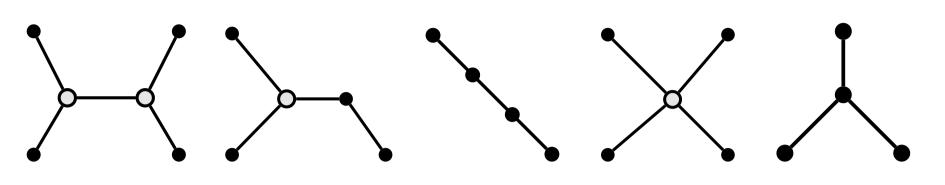
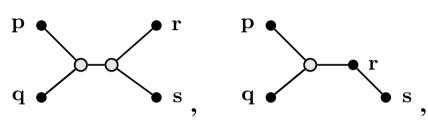


Figure 2: (Leung and Drton, 2018) The solid circles are the observed nodes and grey open circles are the latent nodes.

To illustrate the idea of the theorem, Figure 2 lists out all possible configurations for the minimal subtree induced by any given set of four observed nodes on a tree T (where any node of degree ≤ 2 and not among the considered observed nodes is suppressed). For example, if the four observed nodes have the leftmost two configurations in Figure 2 and are distributed as in



then condition (1) is apparent. Condition (2) can be understood in a similar manner by considering all possible configurations for a minimal subtree induced by any given set of *three* observed nodes on the tree T.

Polynomial characterization

Let ρ_{pq} be the Pearson correlation of the pair (X_p, X_q) for any $1 \le p \ne q$ $q \leq m$. The pairwise Markov property implies that

$$\rho_{pq} = \prod_{(u,v)\in ph_T(X_p,X_q)} \rho'_{uv},$$

where ρ'_{uv} is the Pearson correlation between a pair of nodes u and v in V. Theorem 1 implies a characterization for the covariance matrix of a random vector X in the model $\mathcal{M}_{\mathbf{X}}(T)$; refer to Leung and Drton (2018, Corollary 2.2). To illustrate, let Q be the set of all unordered quadruples of points $\{p, q, r, s\}$ from $\{1, \ldots, m\}$ such that exactly one of the three path pairs in

$$\begin{array}{l}(ph_T(p,q),ph_T(r,s)),\\ (ph_T(p,r),ph_T(q,s))\\ (ph_T(p,s),ph_T(q,r))\end{array}$$

gives an empty set when the union of its two components is taken. In other words, Q contains all quadruples of points whose induced subtree has the leftmost three configurations in Figure 2. Given $\{p, q, r, s\} \in$ \mathcal{Q} , we write $\{p,q\} | \{r,s\} \in \mathcal{Q}$ to indicate that $\{p,q,r,s\}$ belongs to Q in such a way that the two paths of edges $ph_T(p,q)$ and $ph_T(r,s)$ have an empty intersection. In particular, condition (1) in Theorem 1 implies the following (necessary) conditions for the covariance matrix of X, $\Sigma = (\sigma_{pq})_{1 \le p,q \le m}$, to belong to the model $\mathcal{M}_{\mathbf{X}}(T)$:

1. For any $\{p,q\} | \{r,s\} \in \mathcal{Q}, \ \sigma_{pr}^2 \sigma_{qs}^2 - \sigma_{pq}^2 \sigma_{rs}^2 \leq 0$ and $\sigma_{pr} \sigma_{qs} - \sigma_{pq}^2 \sigma_{rs}^2 \leq 0$ $\sigma_{ps}\sigma_{qr}=0.$

2. For any $\{p, q, r, s\} \notin \mathcal{Q}, \sigma_{ps}\sigma_{qr} - \sigma_{pr}\sigma_{qs} = \sigma_{pq}\sigma_{rs} - \sigma_{pr}\sigma_{qs} = 0.$

Testing a star tree model

The star tree model 4.1

A star tree model, i.e. a Gaussian latent tree model of the tree

Note that the two polynomials are respectively $det(\Sigma_{pq,sr})$ and $\det(\Sigma_{ps,qr}).$

Assume X has mean 0 and let X_1, \ldots, X_n be i.i.d. draws from the distribution of X. Due to the independence of samples, the polynomial $det(\Sigma_{pq,sr})$ can be estimated unbiasedly with the differences

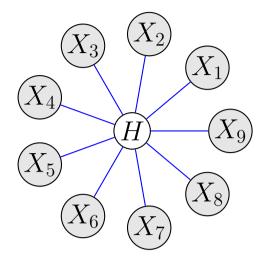
 $Y_{i,(pq)}$

mation

The latter limiting covariance matrix will not degenerate to a singular matrix even if the underlying covariance matrix for X has a lot of zeros, unlike a previous testing approach taken by Shiers et al. (2016) which is susceptible to such singularity issues. Since $\Theta = 0$ when the star tree model is the true generating mechanism, we propose to use a scaled version of the computable sup-norm quantity

as a test statistic for the model validity. A recent advance in highdimensional Gaussian approximation theory (Chernozhukov et al., 2013) suggests that the asymptotic distribution of this test statistic can be well-approximated with a multiplier bootstrapping technique even when the dimension m is large compared to the sample size n; refer to (Leung and Drton, 2018) for the discussion therein.

We experimented with our new testing methodology via simulations, with data generated from the one-factor model in (3) for both (m, n) =



(eight observed nodes and one latent node in this picture), is equivalent to a single factor model with m observed variables $\mathbf{X} = \{X_1 \dots, X_m\}$ described by the linear system of equations

$$X_p = \mu_p + \beta_p H + \epsilon_p, \qquad 1 \le p \le m, \tag{3}$$

where μ_p is the mean of X_p , $H \sim N(0, 1)$ is a latent variable, β_p is the loading coefficient for variable X_p , and $\epsilon_p \sim N(0, \sigma_{p,\epsilon}^2)$ is the idiosyncratic error for variable X_p . In terms of the tree structure no quadruples belong to Q. Hence to test if a dataset comes from a Gaussian star tree model one can test whether for any four points $\{p, q, r, s\} \in \{1, ..., m\}$,

$$\sigma_{ps}\sigma_{qr} - \sigma_{pr}\sigma_{qs} = \sigma_{pq}\sigma_{rs} - \sigma_{pr}\sigma_{qs} = 0.$$

4.2 New testing methodology

$$(sr) := X_{p,i} X_{s,i} X_{q,i+1} X_{r,i+1} - X_{p,i} X_{r,i} X_{q,i+1} X_{s,i+1},$$

$$i = 1, \dots, n-1$$

where the subscripts in $Y_{i,(pq)(sr)}$ is indicative of the row and column indices for the submatrix $\Sigma_{pq,sr}$. If we arrange all the polynomials in $\{\det(\Sigma_{pq,sr}), \det(\Sigma_{ps,qr})\}_{\{p,q,r,s\}\in\{1,\dots,m\}}$ into a $2\binom{m}{4}$ -vector Θ , and correspondingly arrange the estimates $\{Y_{i,(pq)(sr)}, Y_{i,(ps)(qr)}\}_{\{p,q,r,s\}\in\{1,\dots,m\}}$ into a $\binom{m}{4}$ -vector \mathbf{Y}_i for each i, then the central limit theorem for *1*-dependent sums ensures that for a sufficiently large sample size n we have the distributional approxi-

$$\sqrt{n-1}(\bar{\mathbf{Y}}-\Theta) \approx_d N(0,\Upsilon),$$

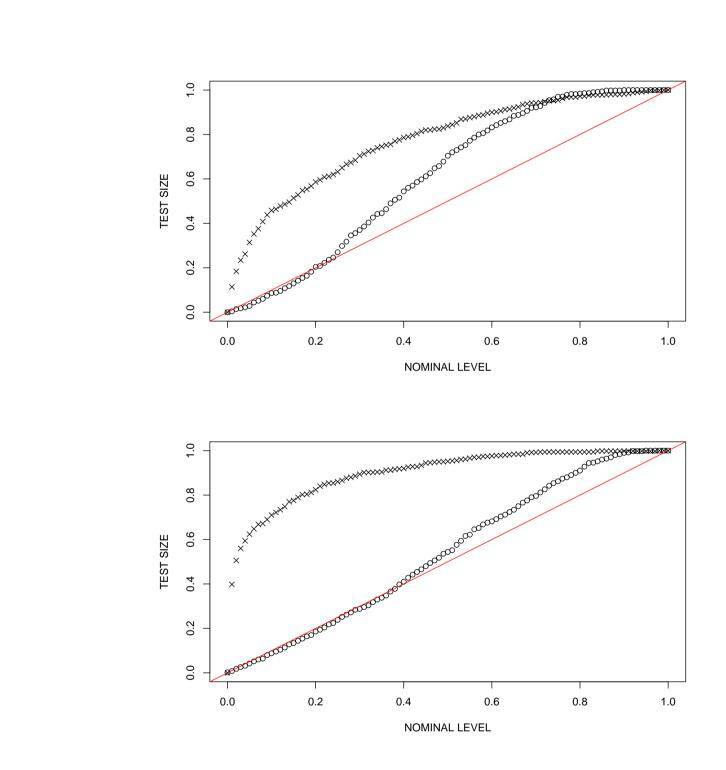
where $\bar{\mathbf{Y}} = (n-1)^{-1} \sum_{i=1}^{n-1} \mathbf{Y}_i$ and $\Upsilon = \operatorname{Cov}[\mathbf{Y}_1, \mathbf{Y}_1] + 2\operatorname{Cov}[\mathbf{Y}_1, \mathbf{Y}_2]$.

$$\sqrt{n-1} \| \bar{\mathbf{Y}} \|_{\infty}$$

4.3 Simulation Results

(20, 250) and (m, n) = (20, 500). The parameter values are as follows: Both loadings β_1 and β_2 are taken to be 10, while the other loadings are independently generated based on a normal distribution with mean 0 and variance 0.2. The error variances $\sigma_{p,\epsilon}^2$ all equal 1/3. Our testing methodology is compared with the classical likelihood ratio (LR) test. This is a "near-singular" model since many entries in the covariance matrix are close to zero. Figure 3 shows the empirical test sizes.

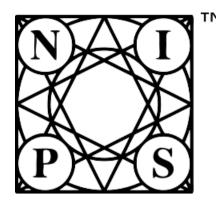
The resulting plots highlight the advantages of our proposed testing method based on the sup-norm test statistic. As n increases, the empirical test size of our test leans closer to the 45° line. This is in contrast to the performance of the LR test which rejects the true model (3) all too often, even as n increases. Our approach based on the unbiased polynomial estimates is not subject to non-standard limiting behaviors that plague the LR test when the parameter values lean close to singularities of the parameter space (Drton, 2009).



References

Victor Chernozhukov, Denis Chetverikov, and Kengo Kato. Gaussian approximations and multiplier bootstrap for maxima of sums of high-dimensional random vectors. Ann. Statist., 41(6):2786–2819, 2013.

37(2):979–1012, 2009.



Neural Information Processing Systems Foundation

Figure 3: Empirical test sizes vs nominal test levels based on 500 experiments. Upper panels: (m, n) = (20, 250). Lower panels: (m, n) = (20, 500). Open circles: Test based on our sup-norm test statistic. Crosses: Likelihood ratio test.

- Myung Jin Choi, Vincent Y. F. Tan, Animashree Anandkumar, and Alan S. Willsky. Learning latent tree graphical models. J. Mach. Learn. Res., 12:1771–1812, 2011.
- Mathias Drton. Likelihood ratio tests and singularities. Ann. Statist.,
- Dennis Leung and Mathias Drton. Algebraic tests of general gaussian latent tree models. NIPS, 2018.
- N. Shiers, P. Zwiernik, J. A. D. Aston, and J. Q. Smith. The correlation space of Gaussian latent tree models and model selection without fitting. *Biometrika*, 103(3):531–545, 2016.