2. T-induced pseudo-metric on X

Suppose \(W \rightarrow E \rightarrow \mathbb{R}_2 \) is any function that assigns non-negative weights to the edges in \(E \), and let \(p_{\mathbb{R}_2}(\cdot) \) be the set of edges on the unique path that connects \(X_p \) and \(X_q \) in \(T \). One can define a pseudo-metric \(d_T \) on \(X \) by

\[
\delta(x, y) = \sum_{i=1}^{m} e^{-w_i/2}, \quad \text{for} \quad p < q.
\]

This is known as a \(T \)-induced pseudo-metric on \(X \). We have the following main result:

Theorem 1 (Extension of Corollary 1) in Shers et al. (2016), Suppose \(W : X \rightarrow \mathbb{R}_2 \) is a pseudo-metric defined on \(X \). Let \(d_T(X_p, X_q) = \delta(\mathbb{R}_2, X_p, X_q) \) for any \(p, q \in \{1, \ldots, m\} \). For any four distinct indices \(1 \leq p, q, r, s \leq m \) such that \(p \neq q \neq r \neq s \), we have

\[
\delta(x, y) = \sum_{i=1}^{m} e^{-w_i/2}, \quad \text{for} \quad p < q.
\]

and for any three distinct \(1 \leq p, q, r \leq m \),

\[
\delta(x, y) = \delta(x, z) + \delta(z, y).
\]

4 Testing a star tree model

4.1 The star tree model

A star tree model, i.e., a Gaussian latent tree model of the tree

\[
X_p = \begin{pmatrix} X_p \\ \vdots \end{pmatrix}, \quad \text{and} \quad \Sigma_p = \begin{pmatrix} \Sigma_p & \cdots \\ \vdots & \ddots & \vdots \\ \cdots & \cdots & \Sigma_p \end{pmatrix}
\]

is a polynomial correlation matrix defined by

\[
\rho_{pq} = \frac{\langle \phi(p, q), \phi(p, r) \rangle}{\sqrt{\langle \phi(p, q), \phi(p, q) \rangle \langle \phi(p, r), \phi(p, r) \rangle}},
\]

where \(\rho_{pq} \) is the Pearson correlation between a pair of nodes \(u \) and \(v \) in \(V \). Theorem 1 implies a characterization for the covariance matrix of a random vector \(X \) in the model \(M \) of \(T \) (Leung and Drton, 2018). To illustrate, let \(Q \) be the set of all unsorted quadruples of points \(\{p, q, r, s\} \) from \(\{1, \ldots, m\} \) such that exactly one of the three path pairs in

\[
(\phi(p, q), \phi(p, r)), \quad (\phi(p, q), \phi(q, r)), \quad (\phi(p, r), \phi(q, r))
\]

gives an empty set when the union of its two components is taken. In other words, \(Q \) contains all quadruples of points whose induced subtree has the most three configurations in Figure 2. Given \(\{p, q, r, s\} \subseteq \mathbb{R}_2 \), we write \(Q_1, Q_2, Q_3 \) for the three path pairs in

\[
(\phi(p, q), \phi(p, r)), \quad (\phi(p, q), \phi(q, r)), \quad (\phi(p, r), \phi(q, r))
\]

for \(1 \leq p < q < r < s \leq m \).

4.2 New testing methodology

Assume \(X \) has mean 0 and let \(X_1, \ldots, X_n \) be i.i.d. draws from the distribution of \(X \). Due to the independence of samples, the polynomial \(d_T(X_p, X_q) \) can be estimated unbiasedly with the difference

\[
Y_{pq}(X_p, X_q) = X_p \cdot X_q - X_p \cdot X_q - \sum_{i=1}^{m} X_i \cdot X_i - X_{p, q},
\]

where the subscripts in \(Y_{pq}(X_p, X_q) \) indicate the row and column indices for the submatrix \(\Sigma_{pq} \). If we arrange all the polynomials in \(d_T(X_p, X_q) \) into a \((m^2) \times (m^2) \) matrix and correspondingly arrange the estimates \((Y_{pq}(X_p, X_q)) \) into a \((m^2) \times (m^2) \) matrix \(Y \), then the central limit theorem for \(T \)-independent sums ensures that for a sufficiently large sample size \(n \) we have the distributional approximation

\[
\sqrt{n} \left(n^{-1/2} \sum_{i=1}^{m} Y_i - n^{-1/2} \sum_{i=1}^{m} T_i \right) \sim N(0, \Sigma_T),
\]

where \(\Sigma_T \) is the covariance matrix of the \(T \)-independent sum. Up to the leading order term \(o(1) \), the covariance matrix will not degenerate to a singular matrix even if the underlying covariance matrix for \(X \) has a lot of zeroes, unlike a previous testing approach taken by Shers et al. (2016) which is susceptible to such singularity issues.

Since \(n = 0 \) when the star tree model is the true generating mechanism, we propose to use a scaled version of the computable sup-norm quantity

\[
\sqrt{n} \left(n^{-1/2} \sum_{i=1}^{m} Y_i - n^{-1/2} \sum_{i=1}^{m} T_i \right) \sim N(0, \Sigma_T),
\]

as a test statistic for the model validity. A recent advance in high-dimensional Gaussian approximation theory (Chernozhukov et al., 2013) suggests that the asymptotic distribution of this test statistic can be well-approximated with a multiplier bootstrapping technique even when the dimension \(m \) is large compared to the sample size \(n \) (refer to (Leung and Drton, 2018) for the discussion therein).

4.3 Simulation Results

We experimented with our new testing methodology via simulations, with data generated from the one-factor model in (3) for both \((m, n) \in \{(20, 500), (20, 1000), (50, 500), (50, 1000)\} \) and \((m, n) = \{(20, 200), (20, 1000)\} \). The parameter values are as follows: Both loadings \(\beta_1 \) and \(\beta_2 \) are taken to be 10, while the other loadings are independently generated based on a normal distribution with mean 0 and variance 0.2. The error variances \(\sigma_i^2 \), equal 1.\(2 \). One testing methodology is compared with the classical likelihood ratio (LR) test. This is a “near-singular” model since many entries in the covariance matrix are close to zero. Figure 3 shows the empirical test sizes. The resulting plots highlight the advantages of our proposed testing method based on the sup-norm test statistic. As \(n \) increases, the empirical test size of our test leans closer to the 5% line. This is in contrast to the performance of the LR test which rejects the true model (3) all too often, even as \(n \) increases. Our approach based on the unbiased polynomial estimates is not subject to non-standard limiting behaviors that plague the LR test when the parameter values lean close to singularities of the parameter space (Drton, 2009).